

AFRL-IF-RS-TR-2004-284
Final Technical Report
October 2004

EXTENSIBLE PROBABILISTIC REPOSITORY
TECHNOLOGY (XPRT)

Alphatech Incorporated

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. P286

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-284 has been reviewed and is approved for publication

APPROVED: /s/

CRAIG S. ANKEN
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
OCTOBER 2004

3. REPORT TYPE AND DATES COVERED
Final Feb 03 – Jun 04

4. TITLE AND SUBTITLE
EXTENSIBLE PROBABILISTIC REPOSITORY TECHNOLOGY (XPRT)

6. AUTHOR(S)
Fortis Barlos

5. FUNDING NUMBERS
C - F30602-03-C-0024
PE - 62301E
PR - GENI
TA - SY
WU - S1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Alphatech Incorporated
6 New England Executive Park
Burlington Massachusetts 01803

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-284

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Craig S. Anken/IFTB/(315) 330-2074/ Craig.Anken@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Searching for and retrieving information from multiple, legacy data sources has become a critical need in areas such as
counterterrorism data mining, all-source analysis, and law enforcement. Critical data is often scattered across
conventional databases, web pages, XML (extensible markup language) repositories, and free text and multimedia data
stores employing multiple schemas or even schema-less formats. The Extensible Probabilistic Repository Technology,
XPRT, enables users and applications to search for and retrieve information from multiple, heterogeneous, legacy data
sources. XPRT's mediators automatically translate information from source legacy formats into one or more federated
schemas that mirror various application domains. XPRT's publish/subscribe service allows users to instantiate queries
and have results asynchronously returned to them as soon as they become available in legacy sources.

15. NUMBER OF PAGES
54

14. SUBJECT TERMS
Information Management, Data Mediation, Counter-Terrorism Data Analysis, Link and
Group Understanding 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

TABLE OF CONTENTS

1 – Summary ... 1
2 – Introduction ... 3
3 – Methods, Assumptions, and procedures .. 6

3.1 Counter-Terrorism CONOPS... 6
3.2 Data Sets .. 7
3.3 Computer Infrastructure Environment ... 9

4 – Technical Approach .. 10
4.1 Distributed Operational Model .. 10
4.2 eXtensible Distributed Architecture (XDA) .. 13

4.2.1 Model-on-a-Model Architecture.. 13
4.3 Components ... 15

4.3.1 XPRT Service .. 15
4.3.2 Internal Repository .. 15
4.3.3 XPRT Aggregators .. 16
4.3.4 XPRT Mediators.. 17
4.3.5 Client GUI ... 17

4.4 Services .. 20
4.4.1 Name Search.. 20
4.4.2 Alias Search ... 20
4.4.3 Probabilistic Match Search .. 21
4.4.4 Unstructured Data Search .. 23
4.4.5 Integration with the Group Detection Algorithm (GDA) .. 25

5 – Results ... 27
5.1 Concurrency Test... 27
5.2 Internal Repository Test .. 29

6 – Conclusions ... 32
7 – References ... 34
8 – Appendix A: XPRT CONOPS .. 36
9 – APPENDIX B: PERSON HYPOTHESIS DOMAIN ONTOLOGY………………………..42
10 – Appendix C: Requirements ... 43

 ii

LIST OF FIGURES
Figure 1: XPRT Overview... 1
Figure 2: XPRT System .. 4
Figure 3: XPRT Architecture .. 11
Figure 4: Processing Model... 12
Figure 5: “Model-on-a-Model” Architecture Facilitates System Evolution.................................. 14
Figure 6: Internal Repository... 16
Figure 7: Aggregator/Mediator Interaction ... 17
Figure 8: GUI Layout .. 18
Figure 9: Visualization of Group Detection results... 19
Figure 10: Dynamic Diagram of the Name Alias Aggregator... 21
Figure 11: Probabilistic Match interaction diagram.. 22
Figure 12: Unstructured Service Components... 24
Figure 13: GDA Components.. 26
Figure 14: Throughput... 28
Figure 15: System Resources .. 29
Figure 16: Internal Repository Performance Improvement... 31

 1

1 – SUMMARY

The eXtensible Probabilistic Repository Technology (XPRT) is a component of DARPA’s
Genisys program. The goal of Genisys was to develop the next generation database technology
that will make it easier and cheaper to exploit distributed information sources and improve the
ability to represent uncertainty in structured data. XPRT was a five year plan, the first year being
focused mostly on research and exploitation of various technologies. The Genisys program was
part of the DARPA Terrorist Information Awareness program (TIA) that was intended to prevent
asymmetric attacks from terrorist organizations on US assets.
The TIA program was cancelled during its first year by Congress. As a result of this action, the
scope of the XPRT program was reduced significantly in functionality, and the new focus became
the implementation of a prototype system that addresses the data access needs of the Intelligence
Community. We built XPRT as a middleware application that fuses information from multiple,
external databases and combines this information into a single, coherent view of the requested
data. Applications define their data requirements and data mapping through a domain ontology
that is then used by XPRT to generate the appropriate object retrieval and fusion processes. The
following figure illustrates the XPRT architecture.

Figure 1: XPRT Overview

XPRT provides the following, high level, capabilities: a flexible transport mechanism to
exchange objects among distributed applications, support of schema evolution for both database
and in-memory objects, an object query mechanism via subscription calls, and finally,
management of uncertainty in the input data.
In a typical XPRT query request, the semantic ontology of the requesting object will span
multiple data sources. A single XPRT query request will result in a federated search over the
various data sources, and will be handled by three independent set of processes, the XPRT

 2

service, the XPRT Aggregators and the XPRT Mediators. The XPRT service acts as an object bus
and forwards objects from producer to consumer processes. The XPRT Aggregators combine
individual domain objects, and the XPRT Mediators retrieve data from the data-sources.
XPRT is a distributed, loose coupled system. The XPRT processes operate independently and
they all communicate via CORBA messages. With the exception of the XPRT service, that acts as
the object bus, and the XPRT Aggregator, that combines the individual results into the
consolidated domain object, any of the data mediators can swap in and out of processing without
impacting the operation of the system; this is particularly common in federated access systems,
where particular external data-sources, or the communication routes to those sources, might
become unavailable independently of the other components.
The XPRT system provides two methods to initiate a search, a programmatic interface and a
graphical user interface. The programmatic interface is defined by an IDL specification and is
accessible via the CORBA protocol. The Graphical interface is built on top of the programmatic
API and has been implemented in Java. The Graphical Interface can run as a standalone
application, or it can be embedded as an applet in a Web browser.
To validate the capabilities of XPRT and demonstrate the value of information fusion in the
Intelligence Community we built a specialized domain ontology and an operational flow based on
a counter-terrorism CONOPS (Concept of Operations). The CONOPS involves tasks that real
analysts are currently engaged in and which involve accessing multiple, heterogeneous,
distributed data bases. These types of tasks currently require the analyst to manually merge data
from both structured (flat file, relational, and/or object-oriented) databases and unstructured (text)
databases. To simulate a real operational scenario we created several databases and we populated
them with fictitious data. The data consist of millions of transactions and a corpus of several
thousand documents distributed across several structured, semi-structured and unstructured
databases. We built specialized mediators and aggregators based on the schema of the databases
and the types of queries in the use case. Finally, we generated a GUI to issue queries and view the
results.

 3

2 – INTRODUCTION

Discovering and ultimately preventing terrorist activities requires an unprecedented collaboration
among systems and human analysts to mine vast quantities of varied data including transactional,
unstructured and semi-structured text, and multimedia data such as imagery and video, and to
monitor these sources for suspicious patterns of behavior. These requirements were identified by
Genisys, a five year technology program that set out to develop the next generation databases to
allow efficient integration of data and enable collaboration between applications.
The Genisys Program Area Definition (PAD) [12] identified several limitations with the current
database solutions. These limitations make the current databases technologies unsuitable for
preventing terrorist’s activities, and the PAD stipulated that most of the problems arise from
exposing the internal database structure to users and applications. The basic approach to this
problem, proposed by Genisys, was to create an abstract schema and a translation mechanism so
that users and application developers only have to know one, virtual database schema that is then
mapped to the physical schemas used in the actual databases. This method is implemented by
software agents called mediators. Genisys also recognized that most of the information in the
current systems contains uncertainty, therefore any database solution must be able to handle data
with uncertain values. Finally, the database solution must be able to scale without bound with a
distributed architecture.
The eXtensive Probabilistic Repository Technology, XPRT, is the technical solution to the
Genisys program. It started as a five year effort, but it was later reduced in scope to a prototype
program scheduled to be implemented into one year. As a result of this reduction in scope, XPRT
grew into a middleware technology capable of efficiently storing and rapidly accessing large
quantities of heterogeneous data, handling information uncertainty, and monitoring a wide variety
of data sources for new, relevant data as soon as it becomes available. Figure 2, below, illustrates
the components of the prototype system as they relate to the full program. Greyed-out
components were not implemented in the prototype. Most of the other components of the full
Genisys program were implemented in the prototype, with the exception of the Privacy Services,
the Dynamic Agents, and the Ontology Manager.
More specifically, the XPRT prototype consists of the following components:

 4

Figure 2: XPRT System

• Query Manager: This component controls the processing of user queries to the XPRT
System. Specifically, it determines if the query can be satisfied by data in the XPRT
Internal Repository or by data that has to be pulled and mediated from External Data
Source(s). User queries are object-based queries expressed in the eXtensible Distributed
Architecture (XDA) query language. In the test system, the Query Executive can either
task the Mediator to pull data from an External Data Source and ingest it into the Internal
Repository or query and retrieve data from the Internal Repository.

• Mediators: This component consists of a set of specialized processes that perform
translation of both queries and data between the schema of an External Data Source and
the internal ontology model maintained by the XPRT system. In the prototype system, the
Mediators are processes specialized for each source and are cognizant of its schema.

• Ingestion Service: This is a database abstraction layer that serves as an interface between
the internal Object Model and the underlying database implementation for the Internal
Repository. This layer provides interfaces to persist, query, and retrieve operations on the
Internal Repository. This layer also performs object-to-relational mapping between the
internal Object Model and the relational schema in the Internal Repository.

• Internal Repository: This is the internal persistent cache for the XPRT System. It is an
Oracle 9i database, and the schema of this database is automatically generated by the
DB-GTO Service based on the internal Object Model.

• Probabilistic Data Management (PDM): A probabilistic query engine & associated
services to manage uncertainty across the XPRT information domain. For the purposes of
the prototype, PDM was used to predict the similarity of the biometric statistics between
individuals.

• Adaptive Information Management (AIM): The original intent of the AIM was to
provide an active data management framework for agent-based push and pull data access,
to support distributed query management across a wide range of data sources, and to

 5

utilize a novel adaptive planning technique to optimize system performance. For the
purposes of the prototype, the dynamic agents were replaced by domain experts, which
are individuals that understand the domain problem in great detail and have experience in
object modeling and object-oriented programming.
The Domain Experts develop the mediators in the Java programming language and
implement the logic to transform the domain objects from the physical representation in
the external databases to the domain ontology specified by the client applications.

• Legacy Database Support: We demonstrate integration with three types of databases,
relational, semi-structured (XML-based), and unstructured (plain text reports). In addition
we can ingest data from streams, such as the WEB and WEB services.

• CORBA Interface: Finally, out of the three proposed interfaces, CORBA, Web Services
and J2EE, we only implemented the CORBA interface. In addition we provided a
Graphical User Interface that non-technical users can use to access the system. The GUI
interfaces with XPRT via the programmatic CORBA API.

The XPRT program, even in its current reduced form, addresses the fundamental Genisys goals of
data abstraction, uncertainty and scalability in the following manner, as specified in the Genisys
PAD [12].
Scalability in XPRT is achieved via three mechanisms: query parallelism, distributed processing
and multi-threaded execution of query requests. A front end process decomposes complex query
requests into a set of parallel execution operations. These operations are then mapped to a set of
system processes that are distributed across the available hardware resources of a distributed
system. Each process operates close to the data source, is cognizant of a particular object of the
domain ontology and performs simple data mediation and transformation tasks. In addition to
distributed execution, each XPRT process is also fully threaded. Every new query request is
handled in its own thread, therefore it can execute concurrently on a multi-processor system. The
result of this architectural design is that XPRT can scale evenly across SMP and MPP systems
and that its processing capacity can grow “indefinitely” as the capability of the hardware systems
increase over time.
Uncertainty is handled by the Probability Query Engine (PQE). PQE is a novel extension to the
relational database technologies that operates over data with uncertainties. PQE resembles
relational databases in several fashions; it handles data that are stored in standard relational tables
and it provides an interface based on relational calculus. At the same time, it extends the
relational technologies in three major ways; (a) it operates over relational tables with missing or
uncertain values; (b) it automatically calculates the probability of the relational results based on
the probability distribution of the input data; and (c), it provides a mechanism to rank order the
results by their calculated probability. In the context of the Intelligence Applications we use PQE
to score individuals based on the match of their biometric statistics to a given suspect. Since the
biometric attributes are uncertain by nature, PQE assigns a probability score to each match and
uses the score to rank order the results. Unlike previous ad hoc approaches for scoring
individuals, the methods underlying PQE are firmly rooted in probability theory – a paradigm that
has been studied for hundreds of years and that has a rich associated set of methods to avoid
racial, sexual, and other kinds of discriminatory biases.
Finally, the need for an Abstract Schema is handled in part by providing a mechanism for
collaborating applications of a distributed system to evolve their schema ontology without having
to update the low-level transport infrastructure. XPRT supports domain model evolution without
changes to the transport mechanism, by enforcing a strict separation between high-level domain
definition and low-level concerns such as persistence and inter process communication. Under
XPRT it is also possible to add new entities to an ontology without modifying the physical
database schemas. This is accomplished through a “model-on-a-model” architecture where

 6

flexible, high-level, semantically rich domain models are encoded in terms of a fixed, generic
object model for transport and persistence.

The rest of this report describes the system in more detail. Section 3, describes the CONOPS, the
supporting data, and the hardware environment. Section 4 describes the technical components of
XPRT. Section 5 provides the results of our experiments. Finally, Section 6 summarizes the
conclusion from our work. The report closes with references and several Appendices with
detailed information about the CONOPS, the domain ontology and the requirements for each
component.

3 – METHODS, ASSUMPTIONS, AND PROCEDURES

The XPRT functionality was built in accordance with a use case scenario that demonstrates the
needs of real-world Intelligence Agents who track the movements of specific individual suspects.
To simulate the activity of suspects in a real world situation, and demonstrate the scalability of
XPRT with large size data, we generated several data sources and populated these sources with a
large volume of synthetic data. We also developed a domain ontology that maps to the
information in these sources and customized the XPRT GUI to display the components of the
ontology. Finally, we tested the prototype system in a distributed environment consisting of
several Sun/Solaris machines and Windows-based client system.
This section describes the methods we followed to build the XPRT functionality and demonstrate
its value.

3.1 COUNTER-TERRORISM CONOPS
The main goal of the CONOPS scenario is to identify and prioritize the specific technical
capabilities that need to be developed, along with the user interfaces (UIs) and the data to drive
the scenario/demonstration.
The setting for the XPRT scenario is the Terrorist Threat Integration Center (TTIC). In this
scenario, we begin by focusing on an individual analyst, Jane. Jane is responsible for monitoring
the activities of the terrorist group Al Qaeda. Jane has several data sources available to her.
These include the traditional “HUMINT (Human Intelligence), SIGINT (Signals Intelligence),
IMINT (Image Intelligence), as well as various forms of additional transactional data (e.g., travel
records, immigration/customs records). In addition, Jane has a “watch list” of specific individuals
that she is monitoring. Jane’s watch list includes known and suspected members of al Qaeda. For
design purposes, we assume that Jane’s watch list contains on the order of a 100 names. For each
name on the watch list, Jane may have additional information, including digital photo, eye, hair
color, weight, height, date/place of birth, passport number and country, gender, known aliases,
education, and known group participation and roles.
One of Jane’s daily responsibilities is to monitor, update, and assess the current whereabouts and
activities of the targets on her watch list, based on the available data, and provide warning about
potential terrorist activities. Some of the things that Jane might be looking for include: meetings
between the people on her watch list, planning/coordination activities pursuant to a terrorist attack
(e.g., surveillance, bomb making), as well as day-to-day functions of a terrorist group (e.g.,
recruiting and training new members, financial activities). Some obvious things that Jane might
look for include: more than one person on her watch list taking the same flight, more than one
person on her watch list flying to the same location within some specified number of days of each
other, or more than one person on her watch list staying in the same or nearby hotels within a
certain period of time.

 7

It is known that al Qaeda and other terrorist groups do not work in strict isolation from each
other; rather, they regularly share techniques, tactics, and intelligence, and provide each other
with access to new technologies. In some instances, these organizations will also work together
and/or make local operatives available to other organizations. As a result, Jane is also interested
in knowing when someone on one of her watch lists takes the same flight, travels to the same
place, or stays in the same hotel as, one or more of the people on one of her colleagues’ watch
lists. In this scenario, we assume that Jane has access to at least a subset of her colleague’s watch
lists.
The scenario is structured so as to gradually illustrate the potential capabilities and technical
concepts of XPRT. These include:

• Easily define queries across multiple databases without having to know the details of
those databases;

• Mediate data from multiple formats into a consistent format that the analyst can use;
• Mediate data from multiple formats into the format required by analytical tools (note, this

format may not be one that the analyst wants to see);
• Support drill-down and pedigree of information;
• Search over both structured and unstructured data;
• Support probabilistic queries and calculation of confidence metrics on data; and

• The ability to work with both structured and unstructured text.
– Appendix A: XPRT , describes CONOPS in detail. The scenario consists of a series of
“Scenes”, each of which consists of the following elements:

Scene: A narrative description of the analyst’s responsibilities and what s/he is trying to
accomplish;

Data: A description of possible data sources (real or synthetic, existing or to be
developed);

Technology: A list of the XPRT technologies that will be illustrated in the scene;

3.2 DATA SETS
In order to support the CONOPS, above, we developed a domain ontology and a set of test data
with the following characteristics:

• The domain ontology must be centered around individuals and their activities. This is to
satisfy the need that we are tracking potential suspects.

• The semantic model of the domain ontology must span across multiple data sources. This
is to satisfy the need that, in the real world, information is spread across multiple
databases.

• There must be a mechanism to associate records between the various sources. In the
context of this prototype we used the Name attribute as the foreign key across the various
databases. Even though the use of the Name attribute is a very simplistic match operation,
it is still used extensively by the Intelligence Community for tracking individuals.
Moreover, XPRT provides the infrastructure to replace the name match with more
elaborate aggregation algorithms.

• The data sets must contain uncertainty. This is to satisfy the requirement that, in the real
world some information is missing, or, if it is not missing, it is known within a margin of

 8

error – the height of an individual is between 5’6” and 5’10”. Applications that deal with
real data must be able to reason with uncertain data. For the purposes of the prototype we
introduced uncertainty only in the biometric statistics of individuals.

• The databases must be of reasonably large size. This is to satisfy the requirement that
XPRT can mediate information from large databases. Although we designed the system
with scalability in mind, we only performed experiments with gigabyte size data
volumes.

• Finally, the simulated databases must represent structured, semi-structured and
unstructured data models.

In order to satisfy the above requirements we created six different databases with synthetic data,
including two databases from open source. Some of the data were collected from DARPA
projects, such as, Centaurus, Evidence Data Base (EDB), etc., others were fabricated, such as INS
and FED, while others contain data from the open source, i.e. Web, BBC, FBIS reports, etc.
These data sources cover four different types of database structures, relational, XML, Web and
Web-services. The following table contains information about the data sources.

Table 1: Data Sources

Data Source Name – Ontology objects Size Data Type

Web

 Google Web Report Unlimited SOAP API

News

 BBC News Unlimited WEB RSS 1.0

Centaurus

 Person Demographics 204,402 people from 240 countries Relational

 Flight Records 204,402 people from 240 countries Relational

 Location Records 9 addresses Relational

 Hotel Transactions 1,469,602 hotel records from 40,370 Relational

Simulated INS

 Visa Applications 14 INS visas Relational

 Points of Entry records 7,113,598 INS records Relational

Simulated Law Enforcement

 Aliases 33 aliases Relational

 Incidents 46 incidents Relational

 Human Intelligences 10 HUMINT reports XML type

Evidence DB

 Communication Records 1765 communication events Relational

 Capabilities 24567 capabilities for 8783 persons Relational

Unstructured

 Unstructured Reports - FBIS 4110 documents XML type

In addition, we created a domain ontology that represents the activities of individuals. The figure
below illustrates a small section of the domain ontology with only three object types.

 9

At the center of the domain model is the PersonHypothesis object. The PersonHypothesis object
represents the aggregation of activities performed by individuals with the same name. Since, in
the real world, names are not unique, a single instance of the PersonHypothesis object can
potentially contain information about several individuals. Deconfliction of individuals must be
performed programmatically by the XPRT aggregators. XPRT does not provide a build-in
deconfliction engine to differentiate the individuals by their activities
In this figure we only show the PersonDemographics and the Alias objects. The full ontology
contains fourteen different types of objects, such as, Hotel-Transactions, Locations, HUMINT,
etc. and is shown in Appendix B
The PersonHypothesis is a self-referential object. We use this mechanism for two purposes: (a) to
capture details about all the aliases of an individual, and (b), to represent information about
individuals whose name matches the name of the original person. In addition, the
PersonHypothesis object contains an attribute called ProbabilityMatch, which captures the
distance of this individual against other persons with similar name and biometric statistics.
The sub-objects of the domain ontology map to the various simulated data-sources. For example,
the PersonDemographics are stored in the Centaurus database, while the Alias information is
stored in the simulated Law Enforcement database. For a complete mapping of the objects to the
databases, and detailed statistics about the various databases, see Table 1, above

3.3 COMPUTER INFRASTRUCTURE ENVIRONMENT
The computer infrastructure utilized for this prototype consisted of the following hardware and
software:
Hardware:
 Database Tier:

 Server: Sun 280R
 Operating System: Solaris 8

CPUs: 2, 900 MHz Sparc III processors with a total of 16MB of eCache
Memory: 2GB
Internal Disks: 2, 36GB, 10,000 RPM SCSI (Used only for operating system)
Network Interface: Quad-speed 100 Mb/s

 Disk Interface: Fast-Wide SCSI III
 Application Tier:

 Server: Sun 280R
 Operating System: Solaris 8

CPUs: 2, 900 MHz Sparc III processors with a total of 16MB of eCache

 10

Memory: 2GB
Internal Disks: 2, 36GB, 10,000 RPM SCSI
Network Interface: Quad-speed 100 Mb/s

Storage Array:
 Sun StoreEdge 3310 SCSI Array

512GB cache
 4, 36GB, 10,000 RPM SCSI Disks

~70GB usable space (RAID 0 + 1 configuration)
Software:
 Database Tier:
 Oracle 9i RDBMS Enterprise Edition release 9.2.0.3
 (All software and database files are stored on the disk array)
 Application Tier:
 Oracle 9i Client release 9.2.0.3
 J2SE 1.4.2
 XPRT (Java components)
 Mediator (Java)
 (All software is stored on internal drives)

4 – TECHNICAL APPROACH

This section provides the technical details of the XPRT system. The first section describes the
operational model we used to achieve scalability and high performance. The second section
describes the eXtensible Distributed Architecture framework, a middleware engine for the
efficient transport of binary data. XDA grew out of several AFRL programs and provides the
underlying data transport and schema evolution services. The third section presents the various
components of the system in more detail. Finally, the fourth section describes the services
provided by XPRT.

4.1 DISTRIBUTED OPERATIONAL MODEL

XPRT mediates information from both unstructured and structured data sources and combines
this information into a single, coherent view of the requested data. A client application establishes
a subscription channel with the server and makes a request for data. The request is encapsulated
in a query object that contains the domain ontology and the query parameters. Upon retrieval of
the query request, the XPRT service initiates a ‘standing query’ operation. The ‘Standing query’
mechanism operates as an email or a bulletin board application; the service first federates the
query to the various aggregators and mediators, and then it starts polling for new data. When new
information becomes available, it notifies the subscribed clients to retrieve the new data. Figure 3,
illustrates the various components of XPRT.

 11

Figure 3: XPRT Architecture

The Data Access Mediators are responsible for retrieving the semantic components of the domain
object. Each mediator has been coded to operate with a particular semantic component of the
object. Moreover, each mediator is cognizant of a particular database schema. The Data Access
Mediators query the external databases, convert the results to instances of their domain objects,
and forward the resulting objects to the XPRT Aggregator. The Aggregator combines the
individual objects into the full domain ontology object and persists the results in the Internal
Repository.
For example, the Centaurus mediators consist of four processes that retrieve the Person
Demographics, the Flight records, the Location records, and the Hotel Transactions from the
Centaurus database (see Table 1 for a mapping of the ontology objects to databases).The
Aggregator process receives these objects and builds the composite PersonHypothesis object.
Finally, the XPRT service retrieves the object from the repository and forwards it to the client
application.
Each query request is handled in its own thread. The sequence of operations for a query execution
is illustrated in Figure 4, and described below.

 12

Figure 4: Processing Model

1. The GUI makes a new query request. The request can be one of four types, Exact Name
Match, Alias Search, Probabilistic Match, and Group Detection. The GUI packages the query
type and the query search predicates into an XDA Generic Transport Object and sends the
object to the XPRT service.

2. Upon receipt, the XPRT Service performs the following operations. It invokes the Universal
Unique Identifier (UUID) generator to get a unique ID for the query, it adds the UUID in the
query object, and broadcasts the query object to its aggregators via the subscription channels.
It then returns the UUID to the GUI client to be used as an identification number for the
results.

3. We have built four different types of Aggregators into the XPRT prototype, one for each
query type, Name match, Alias, Probabilistic Match and Group Detection. To ensure that the
appropriate query type is forwarded to the proper aggregator, we associate an XDA query
filter with each channel. Only the query that passes the filter criteria is forwarded to the
recipient process of the channel.

4. The aggregator receives and forwards queries and combines results. It operates in two major
modes, the polling mode and the query service mode. The polling mode is implemented by
the polling thread. This is the main thread of the Aggregator and the one that is started when
the aggregator is initialized. The polling thread polls for new queries or new partial results.
Once it receives a new query it spawns a new query thread to process the results, associates

 13

the thread id to the query UUID, forwards the query to the Data Mediators, and then goes
back into polling.

5. The Data Mediators operate similarly to the Aggregator. They have two basic modes of
operation, polling and query service. The polling thread polls for new query requests. Once a
new query request arrives, the polling thread spawns a new query service thread, associates
the thread id to the query id and goes back into polling.

6. The Query service thread will periodically query the data store for new data. When new data
are available, the thread creates a new partial Person_Hypothesis object with the new data,
inserts the query UUID in the new object, and forwards this object to the Aggregator.

7. When the polling thread of the Aggregator receives a new partial Person_Hypothesis object,
it locates the query thread for that object, and forwards the object to that thread. It then goes
back into polling.

8. The Aggregator query thread receives partial objects from the polling thread, combines them
into a complete Person_Hypothesis object and forwards it to the XPRT Service.

9. The XPRT service will periodically search the Internal Repository for new data and, if it
finds any, it will notify the appropriate client. Once the client requests the data, the XPRT
service will extract the objects from the IR and forward them to the client.

4.2 EXTENSIBLE DISTRIBUTED ARCHITECTURE (XDA)

XPRT uses the XDA framework for data abstraction, distributed process configuration and
management, data transport, and database services. XDA was developed as part of several AFRL
programs [14, 15, 16] to address the needs of distributed, collaborating applications.
A major difficulty in building component-based distributed systems arises from the informational
dependencies between components required for inter-process communication. A key design goal
of the XDA program was to build a framework that allows us to control this complexity and build
flexible, maintainable, distributed systems. In particular, this technology can be used to build
state-of-the-art, operational, distributed fusion systems. The overall strategy for handling the
requirements mentioned above was to de-couple the high-level description of the operational
domain of interest (ontology) from the low-level data transport and database persistence
mechanisms (schema).

4.2.1 Model-on-a-Model Architecture
A fundamental design feature of the XDA architecture is the separation between a high-level
domain definition (for example a WMD search data model) and the low-level persistence and
inter-process communication details. XDA is based on the capability to build sophisticated,
flexible, high-level models of the problem domain whose implementation is accomplished in
terms of a fixed low-level object model called the Generic Transport Object (GTO) model.

 14

Ontology Class A Ontology Class B Ontology Class C

GTO

GTO conversion Ontology Manager

Runtime class instances - ontology class definitions can evolve

Generic Transport Objects
Fixed object model

OO database

Flat file CORBA

Figure 5: “Model-on-a-Model” Architecture Facilitates System Evolution

The figure above illustrates the “model-on-a-model” architecture of XDA. The runtime classes
conform to a flexible (evolve-able) domain definition. At runtime we have objects that are
instances of entities. Examples of these entities include target hypotheses, USMTF messages, and
system messages. A set of related entities forms an “ontology.” Persistence and transport utilize a
fixed generic object model called the Generic Transport Format (GTO). Ontologies can be
modified and can evolve without requiring modifications of the transport model. Generic
Transport Objects carry both data and structure information. The containment hierarchy and the
physical layout of the attributes of a class are retained when an instance of the class is converted
to a GTO. Thus, the attribute layout and the containment information can be saved if an Object-
Oriented database is used for persistence. This structure information combined with the ontology-
based semantics can be used, for example, to implement efficient object-oriented queries.
An ontology consists of a set of entities and a set of enumerated types. Each entity contains a set
of attributes that have a name and data type. An entity can be derived from a base entity (single
inheritance) thus inheriting the base entity’s attribute set. The base entity is specified by its name
and by the name of its ontology. Supported attribute data types include the basic types (integer,
double, and string), and sequences of those basic types. Additionally, the data type of an attribute
can be user-defined or user-defined-sequence. When an attribute is user-defined its value is an
instance of an entity that has been defined either within the same ontology or in a different
ontology. Similarly, an attribute with type user-defined-sequence has as a value that is a sequence
of instances of user-defined entities. Finally, the data type of an attribute could also be a user
defined enumerated type. Consequently, this mechanism encourages the creation of a set of
definitions of domain entities and concepts that can be incrementally refined and extended
through inheritance and containment. Our use of the term ontology is therefore highly restricted
and should not be confused with more complex constructs such as knowledge bases.
The ontology approach allows users to generate high-level descriptions of the entities of interest
in the problem domain. Once an entity has an ontology-based definition, it can be converted to a
Generic Transport Object (GTO) and instances of this entity can be persisted to a database, saved
to a file, or transported across platforms as byte-streams.

 15

4.3 COMPONENTS
The Distributed Operational Model and the XDA transport, described above, provide the
substrate services that offer efficient query execution and data schema independence. The XPRT
components are then built on top of these services to take advantage of these capabilities. XPRT
consists of four major components: (a) the XPRT service, that manages the subscription/publish
channels between the producer applications and the consumer clients, (b) the Internal Repository
that store the temporary results and makes them available to multiple clients, (c) the various Data
Mediators and the Fusion Aggregators, and (d), the Client GUI. The sections below describe
these components in more details.

4.3.1 XPRT Service
The primary purpose of the XPRT Service is to provide a programmatic interface for clients to
issue federated queries and retrieve the results. Input queries are cached for reuse; other clients
can connect to a running query and receive the same results. The functionality of the XPRT
Service is immutable to new domain ontologies and data sources.
Processes subscribe to the XPRT Service to query the databases. In addition, processes can also
connect to the Service to publish results. The XPRT service operates as an object bus. It
maintains a mapping of publishers, that produce data, to subscribers, that request the data, and it
channels the incoming data to the appropriate processes that have requested them.
All queries that have been issued to the Service operate in standing mode; periodically the
Service will receive new data from its publishers, or the Internal Repository, and will forward the
data to the clients that subscribed for them. Since the results are incremental, they will need to be
cumulated by the client.
The XPRT Service is a task-able XDA component. This means that it is managed by the XDA
task manager and that the topology of the whole XPRT system is controlled by the XDA task
topology. The topology of the system includes the Service, the Aggregators and the Data
Mediators. This design also leverages XDA in defining the publish/subscribe links between all
these components.
The XPRT service provides a CORBA based programmatic API to issue queries. The interface
was designed with simplicity in mind. We provide methods to connect to the service, issue
queries, check for new data and retrieve new information. For a complete description of the
XPRT service API, as well as, all the XPRT and XDA available classes see the javadocs in the
distribution folder of XPRT1.

4.3.2 Internal Repository
The Internal Repository (IR) serves as a cache for the data gathered by the aggregators. The IR is
implemented in Oracle 9i and uses the database layer of XDA to save and retrieve records from
the database. Use of the IR follows the pattern below:
• When a client issues a new query, the XPRT Service will first check its internal list of

standing queries. If there is a match, which means that the query is already running, the
XPRT Service will extract the data from the IR and send them to the client.

• If there is no match, then the XPRT Service will publish the query to the aggregators and add
the query to its list of standing queries. It will then poll the IR for new data.

1 Javadocs are not included in the distribution file but they can be generating by executing the

following command from the root folder of the XPRT distribution:
> ant javadocs

 16

• In response to the query request, the Aggregators will persist Person_Hypothesis objects in
the Internal Repository

The following diagram illustrates the operational flow of the Internal Repository

Figure 6: Internal Repository

4.3.3 XPRT Aggregators
The XPRT Aggregators fuse partial data from the mediators. More specifically, they perform the
operations described below:

• Receive a Query Object from the XPRT Service via an XDA input channel
• Spawn a new thread that will:

 Publish the Query Object to its subscribers
 Retrieve domain ontology objects from its subscribers
 Combine these objects into the PersonHypothesis object

• Persist the Person_Hypothesis object in the Internal Repository.
• Close a specific query thread in response to a client request.

We have developed five types of aggregators: Name aggregator, Alias Aggregator, Probabilistic
Query Engine (PQE) aggregator, Unstructured Data aggregator, and Group Detection aggregator.
The Name aggregator simply combines objects returned from the mediators. The Alias aggregator
retrieves the known alias for a specific individual, and, for each alias, it issues a separate name
query. The PQE aggregator first finds all the persons whose name sounds like the input argument,
and for each such person, it uses PQE to compute the distance between his/her biometric and
those of the input individual. The Unstructured Aggregator searches a corpus of unstructured
documents for reports that match the input arguments. Finally, the Group Detection aggregator
executes the Group Detection Algorithm (GDA) [19] and forwards the results of GDA to the
client.

 17

4.3.4 XPRT Mediators
Mediators are defined as software modules that interact with a user and a variety of data sources
to provide one-stop shopping for an organization’s data [20]. This approach is especially
attractive when taken over a large, heterogeneous system of data, because the cost of source
integration for such a system is high. Intranet and digital libraries could benefit from mediators
because they handle myriad data types and must treat all data appropriately, according to its type.
It has been proposed in the literature [2] that mediators perform both the data access operations
and the information fusion processes. Also, some researchers have proposed intelligent mediators
that adapt to the underlined schema of the external database on demand. In the context of the
XPRT prototype, however, the mediators perform the data retrieval operations, only. The fusion
of information is performed by the Aggregators.
Mediators retrieve data from the external data sources and return the data to the aggregators. The
mediator process receives the query objects from the aggregators, and, for each such object, it
spawns a new thread to query the database and retrieve the relevant data that satisfy the specific
query predicates. It then converts the data source results to the appropriate object of the domain
ontology and forwards the objects to its aggregators.
Mediators are the components of the XPRT system that are specific to the particular domain
ontology and problem. Domain Experts must build new Mediators for each new domain problem,
and implement the database access and data transformation logic in these components. The XPRT
system provides a code generator that creates skeleton mediator classes to be used as the basis for
implementing the domain specific logic. These base classes provide three baseline capabilities,
the transport mechanisms for the transfer of the queries and the result data, the multi-thread
support for managing each query in a separate thread, and the connection polling for the re-use of
the database sessions.
In addition to query objects and results, Mediators also process actions originating from the GUI
that are passed to them through the aggregators. In this implementation of the XPRT prototype,
the only action that has been implemented is the query stop action. When the mediators receive
this action, they stop the thread that processes the specific query.
The diagram bellow illustrates the operation of the mediators:

Figure 7: Aggregator/Mediator Interaction

4.3.5 Client GUI
In addition to the programmatic API, XPRT provides a client GUI to issue query requests and
retrieve information about individuals from the multiple data sources [18]. The GUI is written in
Java and it interfaces with the XPRT service via the Service’s programmatic API. The GUI
provides the following high level capabilities:

• The GUI displays results in a streaming fashion. It notifies the user every time new data
is available, and, after the user has retrieved the data, it will provide visual cues to
differentiate the new information from the old one.

• The results are displayed in a tabular manner; one tab per ontology object.

 18

• The layout of the results is automatically generated from the domain ontology.
• The GUI displays results incrementally to the user.
The overall layout of the GUI is displayed in the following figure.

Figure 8: GUI Layout

The GUI is divided into four major panels, selections panel, standing query panel, watch-list
panel and results panel. To start a search the user enters a name in the selection panel and chooses
a particular query type. XPRT supports five types of queries, name, alias, theme, biometric match
and group detection. See 4.3.3 for a description on each query type.
A query that is submitted for execution gets added in the ‘Standing Query’ panel (SQP). This
panel contains the queries that the user is currently monitoring. Users select queries from the SQP
to view the results. Queries that have new data are highlighted in red. When the user has viewed
the results, then the query entry turns green.
Users manage their lists of suspects in the watch-list panel. This panel provides the mechanisms
to insert and delete names, save the watch-list in a file, and select individuals for a search.
The results from a search are displayed in the Results Panel, one tab per object of the domain
ontology. New information is highlighted in red, and information that has been viewed is shown
in black. In the example shown in the above picture, the GUI displays the information for one
query request, ‘Saif Al Adel’. Each tab in the Results Panel presents the data from the
corresponding object types. The WebReports panel, for example, lists the entries from the Web-
Google data source. The first five panels are rendered in black, which indicates that these data
have been viewed by the user. The next two panels, CommRecords and Person, are highlighted in
red, which indicates that this is new information. New information remains highlighted in red
until the user refreshes the tab with new data from the server. When that occurs, all existing
records turn into black, and any new records are highlighted in red. New data highlights apply to

Selections Panel

Standing Query Panel

Watch-list Panel

Results Panel

 19

records, not only object panels. Thus, for example, if some new communication record becomes
available, then the record will appear as red in the CommRecords panel.
The format of the Results Panel is similar for all the query types, except the Group Detection. The
Group Detection Query clusters individuals based on ‘similar’ activities and this information is
better represented by a graph. In the XPRT prototype we have integrated GDA with the Evidence
DB database (EDB) only. The EDB database represents ‘similar’ activities as those activities that
share the same EDB link. For more information on the EDB schema and the semantics of the
links see [21]. The results from the GDA execution are displayed as a graph with nodes
representing individuals and edges representing inferred associations between the individuals.
The figure below, Figure 9, shows the result from a Groups type query.

Figure 9: Visualization of Group Detection results

The figure above displays the clustering results of GDA based on the link type of Directing
Agent. In this particular example we searched for 10 groups. The graph panel shows the
individuals that were found to be associated, and the group they are associated with. The graph
panel provides several layout options, zooming capabilities, and search.
Standing queries are maintained by the XPRT service; the GUI does not store any state other than
the results of the selected query which are displayed in the result tabs. Users can get a list of the
standing queries that are currently under execution by the server and then select queries to attach
to. Since the results of the standing queries are maintained by the server in the Internal
Repository, attaching to a standing query does not initiate a new search; the server simply
retrieves the results directly from the IR and forwards them to the GUI. Users can let queries
continue to execute, disconnect from the GUI, reconnect at a later time and attach to a previous

 20

submitted query to see both old and new data. Multiple GUI clients can attach to the same
standing query.
Since the list of queries, and the results for each query, is maintained by the server, the access to
this information can be managed by an accredited Multi-Level Security (MLS) process. Although
we did not implement MLS in this prototype, we provide the architecture to easily incorporate
MLS policies and restrict the access of the data to individuals that have the appropriate
classification and group clearances.

4.4 SERVICES
XPRT provides five types of services, (a) exact name query, (b) alias query, (c) probabilistic
match query, (d) unstructured data search, and (e) integration with GDA. The sections below
describe these services in more detail.

4.4.1 Name Search
The purpose of this search is to track individuals based on their exact name. When the Name
Search is issued, XPRT retrieves information from the external databases about individuals
whose name matches exactly the term specified in the query search. Each Name query operates as
a standing query request. The clients don’t need to issue subsequent queries in order to get new
data for the same individual; as new information becomes available in the external databases
XPRT will collect it and forward it to the GUI.
Although the Name Search is a useful process to track individuals, it will miss misspells or
different spellings across the various data sources. These specific capabilities are addressed by the
Alias and the Biometric search queries that are described below.

4.4.2 Alias Search
One of the major requirements in the Counter-terrorist community is to retrieve information for
an individual based on his/her primary name and all his/her known name aliases. The XPRT
system provides this capability with the Alias search query type. The following interaction
diagram describes the sequence of operations that provide this capability.

 21

Figure 10: Dynamic Diagram of the Name Alias Aggregator

1. The Polling thread of the AliasAggregator receives a new query. The polling thread spawns a
new thread to process the results of the name search, called Name_Service thread. It then
returns into polling for more queries.

2. The Name_Service thread first issues the name query to the mediators. It then polls for
results.

3. When it receives a Person_Hypothesis result, it iterates over the Alias list of the object, and
for each name in the list, spawns a new Alias_Service thread. It then goes into polling for
results from the various Alias_Service threads.

4. Each Alias_Service thread issues a query for the alias name to the mediators and polls for
results.

5. As it receives objects from the mediators, the Alias_Service thread assembles them into an
appropriate instance of the Person_Hypothesis object and sends the object to the
Name_Service thread. This object contains information for the respective alias of the original
person.

The Name_Service thread adds the various Alias objects as children to the original
Person_Hypothesis, and sends the full object to the XPRT Service.

4.4.3 Probabilistic Match Search
The purpose of the Probabilistic Query Engine is to match individuals based on their biometric
statistics. The name query retrieves results based on an exact name match, and as result, runs into
the risk of missing information when the name is misspelled across the various sources. The PQE
query will address this limitation by retrieving individuals whose name is phonetically similar to
the query request. However, since the number of returned records might be fairly large, the PQE
aggregator will order the results based on the distance of each suspect’s biometric stats to those of
the requested individual.
Biometric stats are usually inexact measurements and quite often are expressed as ranges of
continuous values, or sets of distinct values. For example, the values in the Weight biometric can
be expressed as ‘[150 – 160], U’, meaning that the value in this attribute is uniformly distributed

 22

in the range of 150 to 160 lbs. Similarly, the values in the ‘Hair Color’ Biometric can be
expressed as ‘{Brown, Dark Blond}, U’, meaning that an exact characterization of hair color was
not possible, therefore it is equally possible (uniformly distributed) that the hair color is brown, or
dark blond. Because biometrics are probabilistic in nature, we will use the Probability Query
Engine to match these types of attributes.
The Name attribute, on the other hand, is deterministic, but is often spelled slightly different on
the various sources. For that reason we will use Soundex [22] as the matching algorithm to
compare names. Soundex was first developed in the early 20th century by the U.S. Census to
identify genealogical relationships between individuals with similar names. Soundex was
designed to work with English type names only. Today, however, Soundex is used in a plethora
of matching applications and it is applied on names of ethnicities other than English. Soundex is
simple and has been proven to be quite accurate, as compared to other, newer and more complex
name matching algorithms. Aside from its simplicity, Soundex is currently implemented in
Oracle, SQLServer and MySQL, and is also available by open-source code in Java and other
languages.
As described above, the probabilistic match is divided into two operations, identify candidate
individuals based on the Soundex match of the name, and then rate the closeness of the
candidates to the requested individual by comparing the biometric statistics. The diagram below
illustrates the sequence of operations for the execution of the probabilistic match.

Figure 11: Probabilistic Match interaction diagram

 23

The PQEAggregator will first publish the query to Person mediator, along with a parameter that
indicates the use of the Soundex match on the name. The Person Mediator will then retrieve
persons from the database whose name matches the Soundex code of the requested name. It will
then assemble all the candidate names and place them in the SimilarNames satellite object of the
Person_Hypothesis. Finally, it will send the Person_Hypothesis object to the PQEAggregator.
The Aggregator will compute the probabilistic match between the internal watch-list table and the
list of candidates returned from the Person Mediator. The match will be applied over the four
biometric attributes, Weight, Height, Hair-Color and Weight-Color. The result of the probabilistic
match is stored in the Probability attribute of the PersonHypothesis object.
The matched individuals and their probability of match are then returned to the GUI for display.

4.4.4 Unstructured Data Search
We implemented the Unstructured Data Search capability using the Oracle Text technology [1].
This technology is summarized in the aforementioned paper as follows “Oracle’s Text engine is a
theme-based retrieval method implemented on top of traditional Boolean techniques. Theme-
based retrieval enables querying for documents that are about a certain theme or concept. The set
of themes from a document together define what a document is about. Themes are extracted from
documents and queries by parsing them using an extensive knowledge-based lexicon together
with an association catalog of concepts and relations. High precision is achieved by a
disambiguation and ranking technique called theme proving whereby a knowledge base relation is
verified in the lexical and semantic context of the text in a document.”
Oracle maintains the lexicon and the association catalog. Our experience with the shipped
knowledge-base resources (both lexicon and catalog) was that they needed to be extended in
order to use them for the anti-terrorism use case. The knowledge-base resources, for example, did
not have an association between several known terrorists and the term terrorism. It is not clear
how users can extend these resources to add new terms and new association between terms.
Despite these limitations, however, the Oracle text was particularly effective for exact keyword
searches and also for theme based queries of well-known terms. For example, a query on Colin
Powell returned several FBIS documents that contained references to the U.S. State Department.
Moreover, these documents were ranked by the probability of the match to the original query
requests, and the documents that have direct report to the Secretary of State were listed at the top
of the list. Oracle text was also fairly quick retrieving documents for exact keyword search, but
considerably slower for theme based queries.
The diagram below describes at a high level the interactions between components that implement
the Unstructured Data search, and the subsequent paragraphs provide the description of each
component’s functionality.

 24

Task Manager

Client

DBGTO

Probabilistic
Data

Oracle
Text
Data

XPRT Service
Unstructured

Data
Aggregator

Unstructured
Data

Mediator

5) XprtQuery_XprtQuery = NAME

Files

3) Import data file into
Oracle Text

IR

Unstructured Import
Directory

2) file arrives

1) polling directory

6) Query Oracle Text for NAME

U
nstructured S

ervice

4) insert into Oracle

12) Retrieve from Oracle

13) Retrieve from Oracle

9) InformationObject with file information

11) InformationObject with file information

8) InformationObject with file information

7) Query Oracle Text

10) InformationObject with file information

Figure 12: Unstructured Service Components

The Unstructured Data Aggregator receives a Name query from the XprtService and executes a
text query against the Oracle Text partition of the IR via the Unstructured Service. From the
results of the query, it constructs InformationObject objects and publishes them to the IR,
indicating which files match the query criteria.

The Unstructured Data Mediator continually loads the files from the Unstructured Import
Directory into the Oracle Text partition of the IR via the Unstructured Service. The Unstructured
Import Directory should be configurable and must be accessible to the XPRT Service.

The Unstructured Service provides an abstraction for the Oracle Text partitions of the IR. It will
provide interfaces to allow the ingestion, query, and retrieval of data. It provides the following
functionality:

1. Load a file from a specified directory into the Unstructured Partition of the IR.
2. List the files available for loading into the Unstructured Partition of the IR.
3. Retrieve the GIST of a document
4. Retrieve the THEMES of a document
5. Retrieve the marked up version of a document in HTML

Currently the Unstructured Partition of the IR is implemented using Oracle Text. A high level
diagram indicating interactions is presented below.

 25

4.4.5 Integration with the Group Detection Algorithm (GDA)
For group detection we used the GDA algorithm from CMU. The Group Detection Algorithm
uses maximum likelihood estimation to find groupings of entities from two sets of data. The
demographic data set that contains information about individuals, i.e. title, affiliation, etc., and the
link data set consists of a listing of links between individuals. GDA is agnostic to the type of the
link. In a real operational environment, the demographic and link data will be spread across
multiple external sources. In our prototype however, all the data reside in a single database, the
Evidence DB. This database is used extensively by the EAGLE program community and contains
association between individuals with many different link types. The simulated EDB data set
contained only seven different link types. Even though we restricted our data sets to one database,
extending our work to handle multiple external sources can be easily accomplished as part of a
hardening process to a real operational system. This work will require the development of
appropriate data mediators and aggregator processes that are cognizant of the target database
schema.
This section describes the components that are used to implement the integration of GDA with
XPRT. It does not describe the capabilities of the GDA application. For a description of GDA see
[19]. The diagram below describes at a high level the interactions between the various XPRT
components. The subsequent paragraphs provide the description of each component’s
functionality.

 26

Task Manager

GDA
Aggregator

GDA
Mediator

EDB

Client

DBGTO

Probabilistic
Data

Oracle
Text
Data

XPRT Service 1) XprtQuery_XprtQuery = GDA

2) XprtQuery_XprtQuery
GDA

3) Links Query

9) Retrieve results

IR

4) EDB Links
Objects 6) QueryCompleted

8) Publish FileReference
from GDA Execution
contains links and metrics

5) Aggregate

7) Generate GDA Files
and Execute GDA

Figure 13: GDA Components

The GDA Aggregator receives a GDA query from the XPRTService and publishes the GDA
query to the GDA Mediator. After the GDA Aggregator publishes the query to the GDA
Mediator, it will poll its subscription channel, aggregating the results until it receives a
QueryCompleted message. Once it has received the QueryCompleted message, it will create the
links and demographics files required for GDA and invoke GDA. Once GDA has completed
executing, the GDA Aggregator will publish a InformationObject ontology object to the
XPRTService indicating where the GDA results exist.

When the GDA Mediator receives a GDA query from the GDA Aggregator, it generates a query
to retrieve all or the link type specified in the query, depending on the parameters, and populates
EDB ontology objects. It publishes the EDB objects back to the GDA Aggregator. When the
GDA Mediator has completed its query, it will publish a QueryCompleted message object to
indicate there are no more links.

 27

5 – RESULTS

The purpose of our testing was to evaluate the behavior of the system under a typical workload
given the processing capacity of the test hardware. The test hardware consisted of two server
machines.

• XPRT server: A single-CPU windows server, 2.7 GHz Pentium-4 processor and 1 GB of
RAM. This server executed all the component processes of the XPRT prototype. The
component processes consist of one process for the XPRT service, 5 processes for
aggregators, and 19 processes for the various data mediators.

• Database Server: Two Sun 280R systems with 2 CPUs each, 900 Mhz SparcIII
processors with a total of 16 MB of eCach and 2 GB of RAM. The database is an Oracle
9.i Enterprise Edition server, highly optimized for fast data access.

The data set consisted of four database schemas representing four simulated relational databases
and two web sources, Google news and BBC. For detailed information about the type of the data-
sources, their statistics, and the mapping of data source to the mediators and the domain ontology
please see Table 1 at page 8.
In a real operational environment the various Data Mediator components will be running on
separate machines, preferably on the same machine as the associated database server. In addition,
the various aggregators could be distributed across multiple components of a parallel hardware
system. In our simulated environment, however, we run all the XPRT components on a single
machine. We estimate that 10 to 20 concurrent queries will be representative of a typical
workload for our simulation environment. We evaluated the behavior of the XPRT prototype
based on this assumption.
We performed two sets of experiments. In the first set we compared the performance of the
system as we increased the number of concurrent queries. In the second set we compared the
performance improvement that the IR provides for cached results vs non-cached ones. The
queries in the first experiment retrieve data solely from the external sources.

5.1 CONCURRENCY TEST
To test the system we incrementally submitted a new query search every 2 to 3 minutes for a total
of 15 concurrent queries. At any given time the mix of the queries consisted of 50% name
queries, 30% aliases and 20% biometrics. A typical query takes about 4 to 5 minutes to return all
the data back from the various databases. Most of this time is spent in database operations rather
than processing by the XPRT system. Since Oracle does not provide tools to measure its
processing time and also delineate the processing load between the database and the client
application, we used the number of open Oracle sessions as a surrogate metric for the database
load. In other words, when the number of open Oracle connections increase, we assume that the
database server incurs higher load.
During our experiments we measured the following four statistics: the time it takes to return the
first set of results for a query, the number of open Oracle sessions, the number of the system
threads, and the size of the virtual memory.
The results are summarized below:

 28

Query Name Time for First Data to
Return (sec)

Oracle Sessions System Threads Memory Size

IDLE (GUI Connected to Service) 0 0 1058 2862536
Saif al Adel 20 4 1160 2999608
Anas al Liby 10 6 1157 3011088
Mustafa Ahmed Hassan Hamza 10 8 1160 3017944
Colin Powell 13 8 1170 3022396
Ella Cole 34 11 1171 3024024
Ed Veale 11 15 1173 3024128
Joe Cho 26 15 1177 3026852
Brian Murphy 21 8 1173 3032716
Davis Ramirez 16 12 1176 3033456
Amy Lee 11 12 1181 3036016
Jim Ray 21 9 1181 3038732
Ian Ford 14 11 1183 3038700
Judy Low 13 10 1188 3041212
Yu Smith 16 12 1190 3042248
Erik Lee 24 13 1194 3041232

The data are also displayed in a graphical form below:

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of concurrent queries

Ti
m

e
fo

r F
irs

t S
et

 o
f D

at
a

to
 re

tu
rn

(s

ec
s)

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f o
pe

n
O

ra
cl

e
se

ss
io

ns

Throughput Oracle Sessions

Figure 14: Throughput

 29

950

1000

1050

1100

1150

1200

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Concurrent Queries

Sy
st

em
 T

hr
ea

ds

2750000

2800000

2850000

2900000

2950000

3000000

3050000

3100000

M
em

or
y

Si
ze

System Threads Memory Size

Figure 15: System Resources

Given these graphs, we can draw the following conclusions:

• The throughput of the system oscillates throughout the simulation. We did not apply any
statistical measurements to compare the behavior of the throughput, but empirically we
observed that the time it takes to retrieve new information does not increase as we submit
new queries. This was a functional objective of XPRT and it was achieved via the use of
the distributed processing architecture and the multi-threading implementation.

• The Oracle sessions reach a steady state after eight concurrent queries. The database
processing increases almost linearly at the beginning of the simulation, and it reaches a
steady state of 12 to 14 concurrent open sessions at the eighth concurrent query.

• The number of the system threads increases when we issue the first query, and it reaches
a steady state after that. This behavior is due to the connection pooling implementation.

• The system memory increases, also, with the submission of the first query, and then it
also reaches a steady state. We observe that, for each additional query, the memory size
increases insignificantly to cause any memory problems. Towards the end of the
simulation the memory size even decreased.

These experiments demonstrate that the system can handle a load of 10 to 15 concurrent queries
without any significant performance degradations. In a typical operational environment with
hardware systems of ten times higher processing capacity over our simulated environment, we
expect that XPRT will be able to sustain a load of 100 to 150 concurrent users.

5.2 INTERNAL REPOSITORY TEST
In addition to the above tests, we also compared the performance improvements of cached queries
vs. non-cached ones. This experiment attempts to quantify the benefits of the Internal Repository
in terms of performance improvement. We structured our experiments as follows:

 30

• We populated the Internal Repository with a fixed number of person hypothesis
objects and all their associated sub-objects. We initially inserted information for 200
persons in the database, which resulted in approximately 700 associated transactions
(i.e. hotel transactions, aliases, flight records, INS Visas, etc).
The number of 200 people that we choose to start with is 0.1% of the total population
size in our simulated universe (there are 204102 persons in all our external sources).
We believe that 0.1% to 1% size of a total population is a reasonable size of data that
can be accommodated by the XPRT cache in a real operational environment. In a real
counter-terrorism system, there could be hundreds of millions of individuals, along
with their associated transactions spread across several dozen of databases. In that
environment, 1% of the total population will result in 1 to 10 million individuals
stored in cache at any given time. We believe that this volume represents a realistic
scenario.

• We issued three query types, Name, Alias and Biometric against three new
individuals that have lots of transactions. These queries resulted in requests against
the external databases. We measured the time it took to retrieve all the results from
each one of the above queries

• We then issued the same three queries again. XPRT detected that these queries have
already been executed, and in this case it retrieved the data directly from the Internal
Repository. We measured again the time it took to get all the results back to the GUI.

• We then increased the size of the Internal Repository with an additional 200 persons,
which now resulted in a total of 1800 associated transactions.

• We performed the same set of operations as before (run three new queries against the
external sources and the IR) and we compared the results.

• The names of the people that were used to populate the IR were chosen from the
Centaurus database, and as a result they contain a moderate number of associated
transactions. On the average, each person has 5 associated transactions. This process
ensures that the Person-Hypothesis objects cached in the Internal Repository contain
several sub-objects.

• For the biometric query we chose a common name that returned back 350 potential
matches.

The performance improvement of the IR vs the External Sources search is displayed in the
following figure:

 31

0

20

40

60

80

100

120

140

Name Alias Biometric

Query Type

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

200+
400+

Figure 16: Internal Repository Performance Improvement

The above figure shows the performance improvement of IR with 200 and 400 individuals in the
cache. The performance improvement is defined as the ratio of the time it takes to retrieve all the
results back from the external sources over the time it takes to retrieve the same results from the
Internal Repository.
We observe that the Internal Repository provides a performance improvement between one and
two orders of magnitude. This is the results for the following three reasons. First, the size of the
internal repository is considerably smaller than the size of the external sources. Secondly, the
structure of the objects persisted in the IR match the ontology of the domain problem. Since we
have already retrieved the sub-objects from their sources, and fused them in the structure
specified by the domain ontology, when we access these objects from the IR we don’t incur any
additional transformation operations. As a result, the access time is faster. The third reason is that
when we access data across multiple sources, we need to perform cross database joins on the
XPRT server. Since the XPRT server is not optimized for database operations – database servers
have been steadily improving their query optimizers and the relational algorithms for several
decades now – we incur delays considerably longer than if the same set of data existed on one
server and the retrieval operations were executed solely by the database.
We observe that the performance improvement of the Alias query type is larger than the name
query. This is expected because the Alias query returns more data back to the users, therefore the
retrieval operations take longer to execute than simply extracting the cached data from the IR.
The result of this behavior is that the IR will perform better as the number of returned objects
increases.
The improvement of the Biometric query is one order of magnitude, and it is the lowest of the
other two. This result might be an artifact of the way we had structured our experiments. The
names of the individuals that are retrieved from the biometric query, along with their biometric
information, resides in a single data source, Centaurus. Consequently, when we perform the
biometric query against the external sources, in effect we only access data from one such external
source. As a result most of the database operations are localized in one schema, therefore we
don’t pay the extra cost of cross-database joins on the XPRT server.
Finally, we observe that the performance improvement slightly decreases as the size of the
Internal Repository grows. This is expected, because the database server has more data to sift

 32

through in order to return the results of a query. We have not experimented with larger size IRs,
but we don’t expect the performance improvement to drop significantly.

6 – CONCLUSIONS

We developed a system that fuses information from multiple external sources, utilizes an Internal
Repository for fast access and handles uncertainty. We evaluated our architecture with a domain
ontology tailored for the Counter-Terrorism problem and a series of external sources, some
populated with simulated data and others with information from open source. Finally, we
designed the system to be a virtual data repository for various Link and Group Understanding
tools, and we tested this capability with one such tool, the Group Detection Algorithm.
We used multi-threading and distributed processing to achieve high performance and scalability.
Our experiments showed that this architecture was effective, and that the performance of the
system does not decrease as the number of concurrent queries grows. Moreover, because of our
tight memory management and thread pooling policies, we managed to host the whole XPRT
system, with the exception of the database server, on a single windows machine. In a typical
operational environment, we expect that the various XPRT component processes will be
distributed over dozens of servers.
The Internal Repository provides a significant performance improvement over the external
sources. Our Ingestion Service consists of an efficient Object to Relational mapping mechanism
that maps domain objects to relational structures and efficiently persists and retrieves complex
java objects to the database with a simple programmatic interface. Our ingestion service manages
continuous streams of data and has the ability to rank information based on the temporal order of
their persistence in the Internal Repository. This is particularly important for the GUI that needs
to differentiate new versus old information and render it differently in the results panel.
We developed processes to retrieve data from the Evidence Database, mediate them to the GDA
format and then run GDA against that data. The results of GDA were rendered by the XPRT GUI
using our LinkView visualization tool. This effort demonstrates that we can integrate Link and
Group Understanding tools and that XPRT can provide the common repository between external
source, analysis tools and visualization applications.
The probability query engine was used to rank individuals based on the match of their biometric
statistics. Biometrics is increasingly used by the various Law Enforcement and Intelligence
Agencies to screen suspects. With the expansion of the U.S. Visit program, where non-US
citizens visiting the US are required to provide their biometric data, we believe that algorithms
that can operate on biometrics and manage uncertainty will become particularly important to the
Intelligence Community.
Finally, we built a GUI in Java that facilitates the submission of queries and the visualization of
the results. Our GUI has some unique characteristics, not readily available in other applications.
The format of the results panel automatically adapts to the structure of the domain ontology as
this ontology evolves. This means that the GUI does not require any code changes to display
objects that have evolved from their original state. Evolution is defined in the strict terms of
object oriented sub-classing and derivation. This capability is particularly important for enterprise
systems where components, databases or applications, can slightly evolve their part of the
ontology without coordination with the other components. The GUI automatically displays new
information as it becomes available in the source databases, and the new information is rendered
differently from the old data. This capability makes the GUI behave as a window into an ever
changing source of data. Finally, the components of the GUI are fairly independent so that other

 33

applications can be integrated fairly easily. This makes the XPRT GUI behave as a dashboard
application where new capabilities can easily be added via the use of plug-ins.
Our experiments and our results demonstrate that we addressed the majority of the Genisys needs
and we proved that such a system will be beneficial to the Intelligence Agencies. As a result of
this activity we have gained insight for future needs, particularly with respect to integrating with
Link and Group Understanding (LGU) tools, and we plan to apply this experience in other
information management projects.

 34

7 – REFERENCES

1. Kavi Mahesh, Jacquelynn Kud, Paul Dixon, ‘Oracle at Trec8: A lexical Approach’,
http://otn.oracle.com/products/text/htdocs/imt_trec8pap.htm, Proceedings of The Eighth Text
REtrieval Conference (TREC-8).

2. David Grossman, Steven Beitzel, Eric Jensen, Ophir Frieder, ‘IIT Intranet Mediator: Bringing
Data Together on a Corporate Intranet,’ IT Pro, January-February 2002

3. David Grossman, Ophir Frieder, David Holmes, David Roberts, ‘Integrating Structured Data
and Text: A relational approach,’ Journal of the American Society of Information Science,
48(2), February 1997

4. O. Frieder, D. Grossman, and A. Chowdhury, "On Scalable Information Retrieval Systems,"
Keynote Paper, IEEE Second International Symposium on Network Computing and
Applications, Cambridge, Massachusetts, April 2003.

5. Steve Silberman, ‘The Quest for Meaning,’ Wired Magazine, February 2000

6. Clara Yu, John Cuadrado, Maciej Ceglowski, J Scott Payne, ‘Patterns in Unstructured Data:
Discovery, Aggregation, and Visualization,’
http://javelina.cet.middlebury.edu/lsa/out/lsa_biblio.htm

7. Metamatrix, ‘Enterprise Information Integration,’ www.metamatrix.com

8. Metamatrix, ‘Leveraging Enterprise Data Assets,’ www.metamatrix.com

9. Metamatrix, ‘Model Driven Information Integration,’ www.metamatrix.com

10. Laks V.S. Lakshmanan, Nicola Leone, Robert Ross, V.S. Subrahmanian, ‘ProbView: ‘A
flexible Probabilistic Database System,’ ACM Transactions on Database Systems,
September, 1997

11. Thomas Eiter, James J. Lu, Thomas Lukasiewicz, V.S. Subrahmanian, ‘Probabilistic Object
Bases,’ ACM Transactions on Database Systems (TODS), Vol. 26, 264-312, September
2001.

12. Dyer, D., “Genisys”, DARPA IAO PAD ID Number 020115, Program Number QGSYE,
Version 9, October 2002.

13. ALPHATECH, Inc, ‘eXtensible Probabilistic Repository Technology (XPRT),’ BAA 02-08
Response, 21 April, 2002.

14. B. Krikeles, “eXtensible Distributed Architecture Query Guide”, January 2002,
ALPHATECH Report.

15. B. Krikeles, A. Lusignan, E. Starczewski, “eXtensible Distributed Architecture (XDA): A
Framework For Distributed Data Fusion”, 2001 MSS National Symposium on Sensor and
Data Fusion, June 2001.

16. B. Krikeles, A. Lusignan, E. Starczewski, “Adaptive, Distributed Fusion for Battlespace
Awareness”, 2000 MSS National Symposium on Sensor and Data Fusion, June 2000.

17. T.J. Rogers, R. Ross, and V.S. Subrahmanian, “IMPACT: A system for building agent
applications,” Journal of Intelligent Information Systems, Vol. 14, 95-113, 2000. (see
http://www.cs.umd.edu/projects/impact/ for information about project IMPACT).

18. ALPHATECH, Inc, ‘XPRT User’s Manual,’ July 2004.

 35

19. J. Kubica, A. Moore, and J. Schneider. ‘Tractable group detection on large link data
sets’, In CMU Tech. Report 03-32, 2003, http://www-
2.cs.cmu.edu/~jkubica/papers/kgroups_ICDM.pdf

20. B. Ludäscher, A. Gupta, M.E. Martone, “Knowledge-Based Mediation and XML-
Based Information Ingtegration,” 17th Int’l Conference on Data Engineering, IEEE
CS Press, Los Alamitos, California, 2001.

21. Barry Silk, Byron Bergert, ‘EAGLE Evidence Database (EDB) Description,’ EAGLE
portal, http://www.eagle-link.org, Global Infotek, Inc. (GITI) documents.

22. The Soundex Indexing System,
http://www.archives.gov/research_room/genealogy/census/soundex.html

 36

8 – APPENDIX A: XPRT CONOPS

Scene Data Technology

Scene 1
Jane is one of the Terrorist Threat
Integration Center (TTIC) analysts
responsible for monitoring the al-
Qaeda organization. As part of her
duties, she maintains a watch list
of 10 al-Qaedea individuals. This
includes:
• Maintaining basic bio

information and monitoring
the movements,
communications, and
activities of each individual on
her watch list

• Providing individual-level
“indications and warning” for
individuals on her watch list

Jane sits down this morning (Tues,
6 July 2004) and looks at an
overnight XPRT search that she
sets to run once a week. This
search looks for any movement or
communications by her
targets/aliases.

The search is run on Monday, 5
July 2004
The results turn up 2 flights, 3
coms (one via unstructured data in
a NSA report), and 2 HUMINT
sightings for a total of 5 target
“hits.”

Results of query shows flight
manifests on two names (one
under Alias), and communications
on one of those names from
structured data.

3 other names will have
information that is found in the
unstructured data tab, including 2
HUMINT sightings and 1 NSA
transcript of a phone call.

XPRT
• Data mediation
• Pedigree

User Interface
• Log in window
• Query interface
• Results.

Benefits
• Coordinated view across

multiple data sources
• Direct links back to

original database sources
for drill down.

 37

Scene Data Technology

Scene 2
Looking through the returned data,
Jane sees that one of the people on
her watch list (Mustafa Hamza but
using alias Mohamed Gamal El-
Sayed) was listed on a flight
manifest for a flight from
Heathrow to JFK on June 30th.
INS records show that he arrived
at 1715 that evening. He is staying
at the “ X” Hotel in NY.
Another person from the watch
list, Saif al Adel, arrived in NY on
28 June and is staying 6 blocks
away at the “X+6” Hotel.
Jane looks under the
communications tab to see if
Hamza/Sayed or Saif has been
contacting anyone from NY.
The results indicate that Saif called
two people in NJ on 7/1 by cell
phone.
Both calls went to previously
unknown numbers in NJ. Jane
will ask the NSA to provide
transcripts and the FBI to examine
the numbers and try and get more
info on the persons called.

Centaurus hotel info, flight
manifests, and INS records.
EELD communications data,
including cell phone calls…

XPRT
• Data mediation
• Query language

User Interface
• Query interface and

templates/sub-templates.

Benefits
• Coordinated view across

multiple data sources.

 38

Scene Data Technology

Scene 3
Before continuing her analysis,
Jane decides to make another
query to see if Mustafa Hamza and
Saif al Adel have traveled together
before.
These could include:
• In the past 3 years, have they

ever taken the same flight or
w/in one week of each other;

• Have they ever traveled within
50 miles and 2 weeks of each
other;

• Have they ever used the same
credit card.

We could mention that:
Jane could also decide later to set
up a query that would see if there
are any other people who routinely
show up in the same hotel or on
flights as Mustafa Hamza when he
travels…possibly to add them to
her watch list.

Flight manifest, EELD data on
phone calls
?Any transcripts of past phone
calls… makes sense that they
would exisit

The Analyst actual watch list with
some information under all of the
“tabs”

XPRT
• Data mediation
• Query language
User Interface
• Query interface and

templates/sub-templates.

Benefits
• Coordinated view across

multiple data sources.
• Easily define new standing

queries based on
templates.

 39

Scene Data Technology

Scene 4
Jane realizes that there are other
organizations that will want to
know about Hamza/Sayed’s and
Saif’s visit and their contacts. She
also knows she does not have
access to all of the databases that
may already hold relevant
information about her target’s
activities in New York.
In particular, Jane knows that there
is an FBI database that she does
not have routine access to that lists
suspected al Qaeda members in the
greater New York area. Jane
wants to see if the FBI knows
anything about the activities of
Saif’s phone contacts, Abdul al
Mugrin or Muhamar Oled.
Jane is also aware that there may
be other databases that she may
not have access to within the
Department of Homeland Security,
etc. She tells her counterparts at
those organizations about her
findings and asks them to search
their databases for additional
information.

Made up reports that FBI analyst
finds from his database that Jane
does not have access too.

XPRT
• Security

Benefits
• XPRT’s data mediation

provides security to only
allow a user to see data
he/she has proper access
too.

 40

Scene Data Technology

Scene 5
After generalizing and saving the
query and the results, Jane returns
to the Watch List Window and
reviews the data.
Based on the results of the query,
Jane decides to initiate a broader
analysis to see if there is
information on other people with
similar names to Hazma and with
approximately the same biometric
data

The watch-list that Jane maintains,
contains biometric information for
all her suspects. In particular, Jane
maintains height, weight, hair
color and eye color. These
biometrics are not exact, therefore
instead of maintaining one value
for each attribute, Jane maintains a
range of values.
For example, for Mustafa Hazma,
the values of the biometric
attributes are:
Height: 5’7” – 5’10”
Weight: 150 – 170
Eye Color: brown, green-brown
Hair Color: black
For the purposes of the demo the
distribution of the values is
uniform
In addition to the watch-list,
biometrics are also kept in the
external databases. Some of the
biometrics are single values, while
some other are ranges of discrete
values. All the biometrics, if
available, are described by a
uniform distribution.

XPRT must first search the
databases and return
transactions for individuals
whose names have the same
Soundex code as Hazma.
Presumably this result set is
larger than an exact name
match.
Then, XPRT should be able to
compare the biometrics of
Hamza’s record to the ones
returned by the Soundex name
match, and rank the results by
the probability of the match.
XPRT must be capable of
handling continuous, discrete
and null biometric values.

 41

Scene Data Technology

Scene 6
Jane is now going to set up a data
collection activity in order to
generate enough data to feed to
one of the application programs for
further analysis. The target
application is the Group Detection
Algorithm (GDA), which takes as
input co-occurrence data and
demographic data.
Jane will use the two targets that
showed up in the same area, and
their hotels as starting points. She
can ask XPRT to collect the names
of all the people who stayed in the
same area, by zip-code, during a
time window before/after the two
people from the watch list, then
look for the hotel stays of those
people, then look for who else
stayed at each hotel when they did,
and so on. XPRT can also seek out
demographic data that might be
relevant (e.g., nationality, age,
gender, etc.).
Since Jane wants the data to be fed
to GDA, XPRT will automatically
prepare the data in a format that
GDA can use.

Unstructured data:
• HUMINT- and FBIS-

enhanced EDB
Structured data:
• Centaurus
• Watch lists

XPRT
• Data mediation
• Query language
User Interface
• Query interface

Benefits
• Easily query to generate a

data set that can be fed to
an external application.

• XPRT’s data mediation
and search capabilities
enhance the analyst’s
ability to use application
tools by making it easier to
get appropriate data into
the format the tools
require.

 42

9 – APPENDIX B: PERSON HYPOTHESIS DOMAIN ONTOLOGY

 43

10 – APPENDIX C: REQUIREMENTS

XPRT Service

The XPRT Service will encode incoming queries into GTOs for transfer to the Aggregators via its
publish channels.
The XPRT Service will not require the client applications to “know” where the information
physically resides
The XPRT Service will support read-only queries

The XPRT Service will operate with a predefined domain object model

In response to a query, the XPRT Service will return to the client a complete object in GTO
format containing aggregated information from multiple sources.
The XPRT Service will notify clients when new objects become available.

The XPRT Service will support multiple concurrent client connections and multiple concurrent
queries
The XPRT Service will allow clients to connect to the system at any time without disrupting
system operation.
The XPRT Service will allow clients to disconnect from the system at any time without
disrupting system operation.
The XPRT Service will publish status messages to file.

The interface will be implemented in CORBA using JacOrb

The XPRT Service will be based on XDA 4.1A

The XPRT Service will provide a well defined Interface

The XPRT Service will be a taskable XDA component

 XPRT will assign a Universal Unique Identifier (UUID) to each of the subscriptions from the
client.
The UUID Service must generate a UUID per run. Only one instance of the UUID Service will
be running per XPRT system. The UUID Service must maintain a CORBA IDL interface
allowing other programs to retrieve a new UUID.
The XPRT Service will provide the UUID as part of the query specification.

The XPRT Service should handle multiple subscriptions issued by a client. Each query will be
treated with equal priority.
The XPRT Service must maintain a CORBA IDL interface declaring client interactions with the
service (ex. openConnection(), createSubscribeChannel()).

 44

The XPRT Service will be made agnostic to the type of ontology.

 The XPRT Service must maintain a list of unique running queries. When a client subscribes to
the XPRT Service, the XPRT Service must check to see if the query in the subscription message
is already running.
The XPRT Service clients must be allowed to retrieve a list of running queries.

 The XPRT Service clients must be allowed to attach to a specific running query; that is, the
client can receive data resulting from a query issued by some other client.
The XPRT Service clients must be allowed to detach from a specific running query; that is, the
client no longer receives data resulting from a query issued by it or some other client.
The XPRT Service closeChannel method will remove a specific subscription from the service.

 When there are no more subscriptions for a particular standing query, the XPRT Service will
terminate that standing query.
The XPRT Service will use the XDA DB_GTO interface to implement an Internal Repository
(IR). The XPRT Service should retrieve data from the IR on existing queries, and it must also be
able to pass new queries to the aggregator(s).
The XPRT Service must be able to publish security credentials issued by the clients.

 45

GUI

Provide an easy to use graphical user interface that an end-user can use to query the XPRT
system.
Be able to submit multiple queries concurrently.

Provide visual cues that indicate the status of running queries, i.e. query submitted, new data
available, etc.
The GUI should operate asynchronously; it will return control to the user when it is waiting for
the results of a query
The user should receive notification that their query was received successfully and that
processing has begun. This notification should be apparent without being obtrusive.
Users should be notified when new information is available

Users should be able to retrieve new information at any time. Results will arrive asynchronously
and will be highlighted differently from results that have already been viewed.
The results for a particular query will be presented to the user in a manner that explicitly indicates
that the initiating query. Each internal frame should contain some information about the query,
such as when the original query was issues and when the last update occurred.
The user should be able to easily navigate result sets from different queries.

The results set for a single query should be represented as a traversable display. Results will be
represented as a set of tables on a panel – where each tab contains only a particular object type.
On top of this tab, the results set will be presented as a sortable table, similar to table in Excel.
Each object in a result set will be presented as a row in this table and new rows will be added
dynamically when new data are retrieve.
Be able to save the query results into an Excel file. Each tab of the result panel will be stored as a
separate worksheet in the Excel file.
New data should be added at the bottom of the result tables.

Hyperlinks will be active.

Standing queries will be displayed in the Standing Query Panel for ease of navigation.

Users must connect to the service with their credentials prior to issuing a query.

The results will be maintained in the Results Panel even after the connection to the service has
been terminated.
Users should be able to view a list of the standing queries that are managed by the XPRT service.

Users should be able to attach to a standing query, depending on their authorization level, and
view the results.

 46

The GUI will support five types of queries, Name Search, Alias Search, Theme Search, Biometric
Search and Group Detection.
The GUI must guide the user to formulate a Biometric Search query. This includes the entry of
the biometric values with uncertainty.
The GUI must guide the user to interpret the results of a probabilistic query search. This includes
the ordering of the results based on the probabilistic match.
The performance of a Biometric match must be comparable to the Exact-Name and Name-Alias
queries. The performance objective must be met even when the potential number of returned
individuals can reach hundreds of entries.
Biometric Match operations are batch oriented, not dynamic. New information – persons, updated
biometrics, etc – in the external sources will be processed only after the Internal Repository is
cleared and the client issues a new query request.
The GUI must provide a wizard to guide the user in selecting the records for input to the Group
Detection Algorithm (GDA).
The output from GDA must be visualized as a graph with nodes representing individuals and
edges represent ting inferred associations.
Indicate when a GDA query has completed.

 47

Probabilistic Match

Users should be able to issue probabilistic match queries.
Probabilistic queries will match person names based on the Soundex code.
Probabilistic queries will match individuals based on four biometric statistics, height, weight, hair
color, eye color
The ‘Height’ and ‘Weight’ attributes will contain ranges of continuous values uniformly
distributed over the specified range. The ‘Eye color’ and ‘Hair color’ will contain discrete values
uniformly distributed over the specified set.
PQE must support match against continuous probability values
PQE must support match against discrete probability values
The GUI must guide the user to formulate a probabilistic query. This includes the entry of the
probabilistic values in the biometric statistics.
The GUI must guide the user to interpret the results of a probabilistic query. This includes the
ordering of the resulting suspects by the probability match
The performance of a probabilistic match must be comparable to the Exact-Name and Name-
Alias queries. The performance objective must be met even when the potential number of
returned individuals can reach hundreds of entries.
PQE operations can only be executed by the aggregator against the Internal Repository. It cannot
be assumed that PQE is available at the source databases
PQE operations are batch oriented, not dynamic. New information – persons, updated biometrics,
etc – in the external sources will be processed only after the Internal Repository is cleared and the
client issues a new query request
XPRT should be able to support multiple clients issuing PQE queries. This requires that XPRT
forwards the proper list of matching individuals to the respective client.

 48

Unstructured Data Search

In response to a search, the XPRT GUI will list the FBIS documents that contain pertinent
information to the search token
The results will be shown as links to documents.
The results should be sorted by order of relevance. The relevance score is calculated by Oracle
text.
The results should also contain a short description of the document with the relevant words
highlighted
When the user opens a document, the query terms should be highlighted
The highlighted terms could be either the search term or the search theme. The search theme is
calculated by Oracle text.
The Unstructured Mediators must be able to access the source file system directly and detect
when new documents are available

 49

Group Detection

The GUI must provide a wizard to start the GDA application
The GDA wizard must list the available links from the database, and allow the user to select the
ones that GDA will use to calculate the groups. A list of the available links will be provided in the
corresponding URD document.
The XPRT engine must be able to read the data from the EDB database and format the
information in a manner that GDA can consume
GDA will operate against all the data from EDB

The output from GDA must be available to the XPRT/LinkView GUI.
The XPRT GUI must provide visual cues that GDA is running.
The XPRT GUI must indicate to the user when GDA has completed.
The user must be able to name the output file that holds the results of the GDA run.
The location of the GDA output file needs to be accessible by the server that runs GDA and the
LinkView GUI
GDA operations are batch oriented, not dynamic. New information – persons, links, etc – in the
external sources will be processed only after the Internal Repository is cleared and the client
issues a new query request.

